Targeted deletion of numb and numblike in sensory neurons reveals their essential functions in axon arborization.

نویسندگان

  • Eric J Huang
  • Huashun Li
  • Amy A Tang
  • Amanda K Wiggins
  • Rachael L Neve
  • Weimin Zhong
  • Lily Y Jan
  • Yuh Nung Jan
چکیده

Mouse Numb homologs antagonize Notch1 signaling pathways through largely unknown mechanisms. Here we demonstrate that conditional mouse mutants with deletion of numb and numblike in developing sensory ganglia show a severe reduction in axonal arborization in afferent fibers, but no deficit in neurogenesis. Consistent with these results, expression of Cre recombinase in sensory neurons from numb conditional mutants results in reduced endocytosis, a significant increase in nuclear Notch1, and severe reductions in axon branch points and total axon length. Conversely, overexpression of Numb, but not mutant Numb lacking alpha-adaptin-interacting domain, leads to accumulation of Notch1 in markedly enlarged endocytic-lysosomal vesicles, reduced nuclear Notch1, and dramatic increases in axonal length and branch points. Taken together, our data provide evidence for previously unidentified functions of Numb and Numblike in sensory axon arborization by regulating Notch1 via the endocytic-lysosomal pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precardiac deletion of Numb and Numblike reveals renewal of cardiac progenitors

Cardiac progenitor cells (CPCs) must control their number and fate to sustain the rapid heart growth during development, yet the intrinsic factors and environment governing these processes remain unclear. Here, we show that deletion of the ancient cell-fate regulator Numb (Nb) and its homologue Numblike (Nbl) depletes CPCs in second pharyngeal arches (PA2s) and is associated with an atrophic he...

متن کامل

Postnatal Deletion of Numb/Numblike Reveals Repair and Remodeling Capacity in the Subventricular Neurogenic Niche

Neural stem cells are retained in the postnatal subventricular zone (SVZ), a specialized neurogenic niche with unique cytoarchitecture and cell-cell contacts. Although the SVZ stem cells continuously regenerate, how they and the niche respond to local changes is unclear. Here we generated nestin-creER(tm) transgenic mice with inducible Cre recombinase in the SVZ and removed Numb/Numblike, key r...

متن کامل

Inactivation of Numb and Numblike in Embryonic Dorsal Forebrain Impairs Neurogenesis and Disrupts Cortical Morphogenesis

Numb and Numblike, conserved homologs of Drosophila Numb, have been implicated in cortical neurogenesis; however, analysis of their involvement in later stages of cortical development has been hampered by early lethality of double mutants in previous studies. Using Emx1(IREScre) to induce more restricted inactivation of Numb in the dorsal forebrain of numblike null mice beginning at E9.5, we ha...

متن کامل

Differential expression of mammalian Numb, Numblike and Notch1 suggests distinct roles during mouse cortical neurogenesis.

During Drosophila neurogenesis, asymmetric cell divisions are achieved by differential segregation of Numb (d-Numb) into one of the daughter cells to cause a bias in the Notch mediated cell-cell interaction. We have isolated a second mammalian gene with significant sequence similarity to d-numb, mouse numblike. When expressed in dividing neural precursors in Drosophila, Numblike is symmetricall...

متن کامل

High levels of Notch signaling down-regulate Numb and Numblike

Inhibition of Notch signaling by Numb is critical for many cell fate decisions. In this study, we demonstrate a more complex relationship between Notch and the two vertebrate Numb homologues Numb and Numblike. Although Numb and Numblike at low levels of Notch signaling negatively regulated Notch, high levels of Notch signaling conversely led to a reduction of Numb and Numblike protein levels in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2005